История ультразвукового исследования

Содержание

  • Ультразвуковое исследование в медицине
    • Ультразвуковое исследование при патологиях опорно-двигательного аппарата

Известно, что для животных, активная жизнедеятельность которых в основном ведется ночью, характерны большие глаза и острое зрение, но летучие мыши, напротив, имеют маленькие глаза и очень большие уши. Это натолкнуло итальянского ученого Ballanzani еще 200 лет тому назад на мысль о проведении исследования по изучению возможностей ориентации летучих мышей в пространстве. Он протянул через комнату тонкие нити, снабженные колокольчиками, затемнил помещение и впустил туда летучих мышей. Несмотря на полнейшую темноту, ни одна летучая мышь не натолкнулась на протянутые нити. Когда же мышам залепили уши, то они стали задевать натянутые нити и даже наталкиваться на стены. Исследования Ballanzani заложили первый камень в понимание процесса ориентации летучих мышей в пространстве. Ballanzani установил, что эти животные ориентируются в пространстве посредством ультразвуковых волн.

В промышленности ультразвук на протяжении многих лет применяется, в частности, при определении косяков рыб в морях и океанах.

Благодаря открытию в 1880 году братьями J. и Р. Curie так называемого пьезоэлектрического эффекта были впервые генерированы ультразвуковые волны. Первые опыты по применению ультразвуковых колебаний были предприняты von Sternbert, который, использовав после катастрофы «Титаника» в 1912 году ультразвуковой зонд, открыл путь для дальнейшего широкого применения эхолокации.

Благодаря французскому физику R. Langevin эхолокация получила дальнейшее развитие во время Первой мировой войны — она стала использоваться для обнаружения подводных лодок.

В технической области ультразвук давно применяется для индикации и локализации места повреждения среды.

 

Ультразвуковое исследование в медицине

В медицине ультразвуковая диагностика впервые нашла применение в области неврологии благодаря исследованиям невропатолога K.Th. Dussig. Вдвоем со своим братом, радиотехником, в период с 1938 по 1942 годах они предприняли первые попытки для получения представления о патологических внутричерепных изменениях. Однако эти попытки не привели тогда к прорыву ультразвуковых технологий в медицину, пауза в развитии диагностического ультразвука затянулась. А в 1954 году после создания J.G. Holmes нового поколения ультразвуковых приборов с водяной подушкой начался новый отсчет времени в развитии медицинской ультразвуковой диагностики. Работы кардиологов J. Edler и. С.Н. Hertz заставили специалистов прислушаться к результатам ультразвукового исследования сердца и привели к созданию эхокардиографии. Последующее развитие учения об ультразвуке привело к тому, что J. Donald и Т.Е. Braun изобрели сканер с датчиком, работающим без водяной подушки. Благодаря данному изобретению появилась возможность исследовать полости тела, сердца и щитовидную железу в двухмерном пространстве. Дальнейшее тесное сотрудничество между медиками и медицинскими техниками способствовало форсированию технического усовершенствования диагностической аппаратуры. Сегодня возможно не только выполнение тонкоигольной прицельной биопсии под контролем ультразвука, но и интраоперационное применение ультразвука.

 

Ультразвуковое исследование при патологиях опорно-двигательного аппарата

Воодушевленные публикациями и непосредственными беседами с Kramps и Lenschow, Р. Граф с коллегами начали с 1978 года систематически пытаться применить ультразвук в диагностике патологий опорно-двигательного аппарата. Ходившие у потреблении в те времена сканеры УЗИ были технически просты, в связи с чем, естественно, имели ограниченные возможности. Если изображение мышц и связок достигалось относительно легко, то применительно к костям использование эхолокации вследствие тотального отражения ультразвука от кортикального слоя казалось практически безуспешным. Только после внедрения первого высокоразрешающего Compound-сканера с 5 и 7,5 МГц датчиками (в тот период времени они были скорее исключением, чем правилом) удалось впервые получить изображение мениска in vivo. На основании этих результатов ультрасонография начала внедряться в практику и для исследования тазобедренных суставов новорожденных.

Полученные данные были очень неинформативными, поскольку смену зон эхогенности и анэхогенности невозможно было соотнести со знаниями того времени об ультразвуковой анатомии тазобедренного сустава новорожденного. Однако профессиональный интерес вынудил препарировать суставы на трупах и снабжать отдельные анатомические структуры отражающими материалами для полной их идентификации при сонографическом исследовании. Благодаря постоянному сравнению трупных препаратов, рентгенограмм, артрограмм, плоскостных срезов на трупных тазобедренных суставах, диафаноскопии с сонограммами удалось гораздо лучше идентифицировать анатомические структуры в сонографическом изображении. Сравнительные серии сонограмм тазобедренных суставов с наличием вывиха и без вывиха бедра показывали разнообразную эхоструктуру и вместе с тем постоянную ультразвуковую модель сустава. Отталкиваясь в тот период времени от рентгенологической оценки тазобедренного сустава, исследователи пытались и по данным сонографии судить о положении головки бедра. С помощью подобного подхода к результатам УЗИ удалось по крайней мере установить различия между «вывихом» и «отсутствием вывиха». Своеобразной вехой в ультразвуковой диагностике вывихов в тазобедренном суставе следует считать период, когда «одалживание» друг у друга ультразвукового аппарата, оплата материалов за счет собственных средств и выполнение исследования, относимого к разряду «хобби», сменились на официальную программу австрийского фонда, направленную на научное решение этой проблемы.

 

Источник